当前位置:首页 > 情感口述 > 文章

2015年秋七年级数学上册素材 恒等变形 新人教版

日期:2019-06-20?|? 作者:本站原创?|? 105 人围观!

2015年秋七年级数学上册素材 恒等变形 新人教版

恒等变形  恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.  表示两个代数式恒等的等式叫做恒等式.  如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.  将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).  以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.  如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.  1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.  如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.  反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).  2.通过一系列的恒等变形,证明两个多项式是恒等的.  如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r  例:求b、c的值,使下面的恒等成立.  x2+3x+2=(x-1)2+b(x-1)+c  解一:是恒等式,对x的任意数值,等式都成立  设x=1,代入,得  12+3  再设x=2,代×1+2=(1-1)2+b(1-1)+c  c=6入,由于已得c=6,故有  22+3×2+2=(2-1)2+b(2-1)+6  b=5  x2+3x+2=(x-1)2+5(x-1)+6  解二:将右边展开  x2+3x+2=(x-1)2+b(x-1)+c    =x2-2x+1+bx-b+c    =x2+(b-2)x+(1-b+c)  比较两边同次项的系数,得  由②得b=5将b=5代入③得  1-5+c=2  c=6  ∴x2+3x+2=(x-1)2+5(x-1)+6  这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.。


情感美文提供的文章均由网友转载于网络,若本站转载中的文章侵犯了您的权益,请与本站管理员联系. Copyright © 2006-2019 情感美文-情感专家www.c229.com All Rights Reserved.

返回顶部